skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piermont, Evan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that it is possible to understand and identify a decision maker’s subjective causal judgements by observing her preferences over interventions. Following Pearl [2000, DOI: doi.org/10.1017/S0266466603004109 ], we represent causality using causal models (also called structural equations models), where the world is described by a collection of variables, related by equations. We show that if a preference relation over interventions satisfies certain axioms (related to standard axioms regarding counterfactuals), then we can define (i) a causal model, (ii) a probability capturing the decision-maker’s uncertainty regarding the external factors in the world and (iii) a utility on outcomes such that each intervention is associated with an expected utility and such that intervention A is preferred to B iff the expected utility of A is greater than that of B. In addition, we characterize when the causal model is unique. Thus, our results allow a modeler to test the hypothesis that a decision maker’s preferences are consistent with some causal model and to identify causal judgements from observed behavior. 
    more » « less
  2. We investigate how to model the beliefs of an agent who becomes more aware. We use the framework of Halpern and Rego (2013) by adding probability, and define a notion of a model transition that describes constraints on how, if an agent becomes aware of a new formula φ in state s of a model M, she transitions to state s* in a model M*. We then discuss how such a model can be applied to information disclosure. 
    more » « less
  3. We develop a modal logic to capture partial awareness. The logic has three building blocks: objects, properties, and concepts. Properties are unary predicates on objects; concepts are Boolean combinations of properties. We take an agent to be partially aware of a concept if she is aware of the concept without being aware of the properties that define it. The logic allows for quantification over objects and properties, so that the agent can reason about her own unawareness. We then apply the logic to contracts, which we view as syntactic objects that dictate outcomes based on the truth of formulas. We show that when agents are unaware of some relevant properties, referencing concepts that agents are only partially aware of can improve welfare. 
    more » « less